
REPORT

Mutations in NEXN, a Z-Disc Gene,
Are Associated with Hypertrophic Cardiomyopathy

Hu Wang,1,2,4 Zhaohui Li,1,4 Jizheng Wang,2 Kai Sun,2 Qiqiong Cui,3 Lei Song,2 Yubao Zou,2

Xiaojian Wang,2 Xuan Liu,2 Rutai Hui,2,* and Yuxin Fan1,*

Hypertrophic cardiomyopathy (HCM), themost common inherited cardiac disorder, is characterized by increased ventricular wall thick-

ness that cannot be explained by underlying conditions, cadiomyocyte hypertrophy and disarray, and increased myocardial fibrosis.

In as many as 50% of HCM cases, the genetic cause remains unknown, suggesting that more genes may be involved. Nexilin, encoded

byNEXN, is a cardiac Z-disc protein recently identified as a crucial protein that functions to protect cardiac Z-discs from forces generated

within the sarcomere. We screened NEXN in 121 unrelated HCM patients who did not carry any mutation in eight genes commonly

mutated in myofilament disease. Two missense mutations, c.391C>G (p.Q131E) and c.835C>T (p.R279C), were identified in exons

5 and 8 of NEXN, respectively, in two probands. Each of the two mutations segregated with the HCM phenotype in the family and

was absent in 384 control chromosomes. In silico analysis revealed that both of the mutations affect highly conserved amino acid resi-

dues, which are predicted to be functionally deleterious. Cellular transfection studies showed that the two mutations resulted in local

accumulations of nexilin and that the expressed fragment of actin-binding domain containing p.Q131E completely lost the ability to

bind F-actin in C2C12 cells. Coimmunoprecipitation assay indicated that the p.Q131E mutation decreased the binding of full-length

NEXN to a-actin and abolished the interaction between the fragment of actin-binding domain and a-actin. Therefore, the mutations

in NEXN that we describe here may further expand the knowledge of Z-disc genes in the pathogenesis of HCM.
Cardiomyopathy is a primary heart-muscle disorder associ-

ated with cardiac dysfunction. On the basis of morpholog-

ical and functional characteristics, it is classified into

four categories: hypertrophic, dilated, arrhythmogenic

right ventricular, and restrictive.1 Hypertrophic cardiomy-

opathy (HCM [MIM 192600]) is characterized by hyper-

trophy and diastolic dysfunction of cardiac ventricles

accompanied by cardiomyocyte hypertrophy, fibrosis, and

myofibrillar disarray.2 Diagnostic criteria for HCM in

adults are defined by a maximal left ventricular wall thick-

ness of R 13 mm on echocardiography in the absence of

other loading conditions such as hypertension or aortic

valve stenosis. Occurring in approximately 1 in 500 indi-

viduals, HCM is the most common heritable cardiac

disorder and often follows an autosomal-dominant inher-

itance pattern with incomplete penetrance.3 HCM can

manifest negligible to extreme hypertrophy, minimal to

extensive fibrosis and myocyte disarray on microscopy,

absent to severe left-ventricular ouflow-tract obstruction,

and distinct septal morphologies. The clinical course also

varies considerably, from a benign asymptomatic course

to that of severe heart failure and sudden cardiac death

(SCD). HCM is the most common cause of SCD in young

and competitive athletes.3,4 In recent studies, the annual

rate of SCD from HCM varies between 0.1% and 1.7%,

a subset of patients having an estimated annual SCD prob-

ability between 4% and 5%.5,6
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HCM is usually caused by mutations in genes that

encode components of the cardiac muscle sarcomere.

To date, hundreds of mutations implicated in the patho-

genesis of HCM have been reported in nine genes encod-

ing sarcomeric filament proteins: b-myosin heavy chain

(MYH7 [MIM 160760]), cardiac myosin-binding protein

C (MYBPC3 [MIM 600958]), cardiac troponin T (TNNT2

[MIM 191045]), cardiac troponin I (TNNI3 [MIM 191044]),

cardiac troponin C (TNNC1 [MIM 191040]), cardiac a-actin

(ACTC1 [MIM 102540]), a-tropomyosin (TPM1 [MIM

191010]), essential myosin light chain (MYL3 [MIM

160790]), and regulatory myosin light chain (MYL2

[MIM 160781]). Among these genes, mutations in MYH7,

MYBPC3, TNNI3, and TNNT2 occur most often and

account for as many as 50% of reported genotyped HCM

cases.7–10

With a large portion of HCM cases being genetically

unexplained, genes encoding proteins involving potential

functional or transcriptional processes of the cardiomyo-

cyte, particularly those encoding the cytoarchitecture

proteins localized to the cardiac Z-disc, have been associ-

ated with disease pathogenesis. The Z-disc complex is

located at either end of the contractile unit of the striated

muscle and links titin and actin filaments from opposing

sarcomere halves in a lattice connected by a-actinin. The

Z-discs provide a backbone for the insertions of actin-based

thin filaments and represent a key interface between the
ylor College of Medicine, Houston, TX 77030, USA; 2Sino-German Labora-

inese Academy of Medical Sciences, Peking Union Medical College, Beijing

iovascular Institute, Chinese Academy of Medical Sciences, Peking Union

Genetics. All rights reserved.

Journal of Human Genetics 87, 687–693, November 12, 2010 687

mailto:huirutai@gmail.com
mailto:yuxinf@bcm.edu
http://dx.doi.org/10.1016/j.ajhg.2010.10.002


contractile apparatus and the cytoskeleton. In addition,

the complex molecular network of Z-disc proteins is

pivotal for reception, transduction, and transmission of

mechanical and biochemical signals.11,12 During recent

years, the Z-disc has become the focus of research, and

new functions beyond a sole passive mechanical trans-

mitter of force have emerged.13 Particularly, as a potential

myocardial ‘‘stretch receptor,’’ the Z-disc would enable the

cardiomyocyte to sense increased mechanical load and

respond with changes in gene expression, ultimately re-

sulting in cellular hypertrophy.14,15 Because of the Z-disc’s

importance in establishing the mechanical coupling and

as the stretch-sensor mechanism of the sarcomere, genes

encoding these Z-disc proteins were hypothesized to be

excellent candidates for involvement in HCM.16 In 2003,

the first Z-disc mutations implicated in HCM were

described in muscle LIM protein encoded by CSRP3

(MIM 600824), which comprises two LIM domains, the

first of which directly binds to a-actinin.17 In 2004, two

missense mutations in telethonin, which is a Z-disc

protein encoded by TCAP (MIM 604488) and represents

an important link between titin and other Z-disc-associ-

ated proteins, were identified in a cohort of HCM cases.18

Recent studies have reported that mutations in another

five Z-disc genes, LDB3 (MIM 605906; encoding LIM

domain binding 3), ACTN2 (MIM 102573; encoding

a-actinin 2), VCL (MIM 193065; encoding vinculin),

MYOZ2 (MIM 605602; encoding myozenin 2), and

ANKRD1 (MIM 609599; encoding ankyrin repeat domain

1), are responsible for HCM.19–21

Recently, a cardiac Z-disc protein, nexilin, encoded by

NEXN (MIM 613121), has been identified as a crucial

protein that functions to protect cardiac Z-discs from

forces generated within the sarcomere that, whenmutated,

lead to dilated cardiomyopathy in both humans and zebra-

fish.22 Nexilin, consisting of 675 amino acids, was isolated

previously as an F-actin-binding protein at cell-matrix

adherens junctions.23 Hassel and colleagues found that

nexilin is highly abundant in the heart and skeletal muscle

and is located specifically to the Z-disc; loss of nexilin in

zebrafish led to perturbed Z-disc stability and heart

failure.22 Moreover, these researchers identified one dele-

tion and two missense mutations in NEXN in a large

cohort of patients with dilated cardiomyopathy (DCM

[MIM 115200]).22 These mutations account for approxi-

mately 1% of the patients studied.

On the basis of the understanding that nexilin plays

a unique role in stabilizing and protecting Z-discs from

mechanical trauma and that mutations of certain sarco-

meric and sarcomeric-associated genes identified in DCM

also are known to cause HCM, we hypothesized that muta-

tions in NEXN might be involved in the pathogenesis of

HCM. Therefore, we performed sequencing analysis of

NEXN in a cohort of 121 unrelated Han Chinese patients

with HCM who previously had not been found to carry

mutations in eight commonmyofilament-associated genes

(MYH7, MYBPC3, MYL2, MYL3, TNNT2, TNNI3, TPM1,
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ACTC1) responsible for HCM.7 We selected 192 control

subjects from among healthy individuals matched on

the basis of gender and ethnic origin. All patients with

systemic hypertension, valvular heart disease, and congen-

ital heart disease, including subaortic, valvular, and supra-

valvular aortic stenosis and coarctation of aorta, were

excluded at the beginning of the study. Informed consent

was obtained from all participating individuals. This study

was approved by the institutional review board of the

Cardiovascular Institute, Chinese Academy of Medical

Sciences.

Genomic DNA was isolated from peripheral blood

leukocytes with a standard salting-out protocol. Primer

pairs were designed to amplify all of the coding regions

and the intron-exon boundaries of NEXN based on the

published sequence (GenBank accession number NM_

144573.3). PCR amplifications were performed with the

use of standard protocols, and PCR products were ana-

lyzed by direct sequencing on an Applied Biosystems

3730 Genetic Analyzer with BigDye Terminator chemistry

(version 3.1).

We identified two heterozygous missense mutations,

c.391C>G (p.Q131E) and c.835C>T (p.R279C), which

are located in exons 5 and 8, respectively, in NEXN in

two probands with familial HCM (Figure 1). Both of the

mutations affect highly conserved amino acid residues

among 12 interspecies orthologs and are located in the

important functional domains of nexilin (Figure 2). In

family A, the NEXN mutation p.Q131E was detected in

individuals II:2, II:3, and III:1, and this mutation segre-

gated with the HCM phenotype in the family members.

The proband (II:2) was a 37-year-old female diagnosed

with HCM because of typical HCM clinical features. The

echocardiogram showed that she had a nonobstructive

cardiac hypertrophy with an interventricular septal

thickness of 21 mm with normal left ventricular systolic

function and an abnormal electrocardiogram (ECG) with

T-wave changes. The proband’s mother (I:2) had died of

SCD at the age of 38 years. Her 34-year-old brother (II:3)

and her 16-year-old daughter (III:1), each of whom carry

the p.Q131E mutation, also were found to be affected,

and the echocardiogram demonstrated that both of them

had asymmetrical septal hypertrophy. In addition, II:3

showed an abnormal ECG indicating voltage criteria for

left ventricular hypertrophy. The other family members,

her father (I:1) and her daughter (III:2), did not demon-

strate any clinical evidence of HCM on echocardiography

or ECG. Individuals II:4 and III:3 had not had clinical eval-

uation and genetic testing.

In family B, the proband (III:2), a 45-year-old male

carrying the NEXN mutation p.R279C, was diagnosed

with HCM, with a left ventricular anterior wall thickness

of 17 mm. His grandmother (I:2) had died suddenly with

suspected heart disease at 40 years of age. His father (II:1)

and his younger brother (III:4) were diagnosed subse-

quently with HCM as a result of clinical screening of the

family, and the mutation p.R279C was detected in both
er 12, 2010



Figure 1. Mutation Analysis of NEXN in Familial Hypertrophic Cardiomyopathy
Filled symbols indicate clinically affected individuals; open symbols indicate unaffected individuals; half-filled symbol indicates sus-
pected affected individual; a slash through a circle or square indicates a deceased individual; plus (þ) and minus (�) signs indicate
the presence or absence of a mutation in NEXN, respectively; symbol with ‘‘?’’ indicates an individual who did not have clinical evalu-
ation and genetic testing; squares indicate males; circles indicate females; shaded symbol indicates an individual who was not included
in the LOD score calculations. The proband patient in each family is marked with an arrow. The right part of each panel indicates direct
sequencing data of NEXN mutant sequences compared with a normal control.
(A) Pedigree of Family A. NEXN mutation p.Q131E was identified in II-2, II-3, and III-1.
(B) Pedigree of Family B. NEXN mutation p.R279C was identified in II-1, III-2, III-4, and IV-1.
of them. The echocardiogram showed that his father had

asymmetrical left ventricular hypertrophy with an anterior

wall thickness of 22 mm, and the ECG revealed atrial fibril-

lation and ST-T changes. His younger brother was found to

have moderate asymmetrical interventricular septal thick-

ness (16 mm), with an abnormal ECG indicating voltage

criteria for left ventricular hypertrophy. The proband’s

daughter (IV:1) also carried the same mutation and was

clinically asymptomatic; however, because she was only

12 years of age at the time of evaluation, she most likely

was in the presymptomatic phase of the disease. Clinical

findings of the individuals with and without NEXN muta-

tions in the two Chinese HCM families are summarized in
The American
Table 1 and Table S1 (available online), respectively.

Linkage analysis was performed in the two pedigrees

with the use of Linkage 5.1. Individual IV:1 in family B is

assumed to be below the age of onset and, hence, is not

included in the calculation. The LOD score is 0.60 for

family A and 0.56 for family B. The combined LOD score

of the two pedigrees is 1.16, suggesting that the observed

segregation would occur at a random chance of less than

1 in 14. Although the NEXN mutations segregate with

HCM in these families, the small sample size may limit

the strength of the linkage signal.

To exclude the possibility that the two identified

sequence variants (p.Q131E and p.R279C) are rare
Journal of Human Genetics 87, 687–693, November 12, 2010 689



Figure 2. Location and Conservation of
the NEXN Protein Amino Acid Residues
Affected by the Mutations
NEXN is a 13-exon gene encoding two
N-terminally locatedactin-bindingdomains
(ABD), a coiled-coil domain (CC), and a
C-terminal immunoglobulin superfamily
class (IGcam).
(A) Schematic structure of NEXN mRNA
and protein. The p.Q131E mutation is
located in exon 5 and in the first actin-
binding domain; the p.R279C mutation is
located in exon 8 and in the coiled-coil
domain.
(B) NEXN peptide sequences surrounding
the mutated residues (black box) with
multiple interspecies alignments generated
by ClustalW. Q131 and R279 amino acid
residues of NEXN are highly conserved
across species.
polymorphisms without functional significance, we first

confirmed that the two variants were not reported in the

NCBI dbSNP database. Furthermore, neither of the two

mutations could be identified in 192 ethnically matched

healthy control subjects. To further confirm that the two

mutations (p.Q131E and p.R279C) are likely to be disease

causing, we applied two commonly used in silico algo-

rithms, PolyPhen-2 and SIFT, to predict the putative effects

of the two mutations on protein function.24–26 Both of the

two algorithms strongly suggested that the two NEXN

sequence variants might be disease-causing mutations.

In addition to the two mutations, we also identified two

SNPs, c.733G/A (p.G245R [rs1166698]) and c.1419A/G

(p.R473R [ss252441070]), the frequency of each having

no significant difference between HCM cases and controls

(Table S2).

HCM has long been considered a disease of the sarco-

mere, more specifically a disease of the myofilament
Table 1. Clinical Features of Affected Patients with NEXN Mutations

Family and Subject Sex Age (Yrs) SBP/DBP LVmax PW L

Family A

II:2 F 37 128/76 21 11 2

II:3 M 34 122/82 18 10 2

III:1 F 16 108/70 14 8 2

Family B

II:1 M 67 135/85 22 12 3

III:2 M 45 132/80 17 9 2

III:4 M 43 129/75 16 10 3

IV:1 F 12 95/62 11 7 2

F, female; M, male; SBP/DBP, systolic blood pressure/diastolic blood pressure (mm
ness (mm); LVESD, left ventricular end–systolic diameter (mm); LVEDD, left vent
(mm); EF, ejection fraction; ECG, electrocardiogram; AF, atrial fibrillation.
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because of the hundreds of mutations scattered

throughout the genes that encode proteins of the myofila-

ment. With the recent discovery of HCM-associated muta-

tions in genes encoding proteins of the Z-disc17–21 and

proteins involved in calcium-induced calcium release,27,28

the body of knowledge regarding the genetic spectrum of

HCM continues to expand. Nexilin, encoded by NEXN

and recently isolated as a Z-disc protein, plays an impor-

tant role in stabilizing and protecting Z-discs from

mechanical forces.22 Nexilin is expressed specifically in

heart and skeletal muscle and contains two N-terminally

located actin-binding domains (ABD), a coiled-coil domain

(CC), and a C-terminal immunoglobulin superfamily class

domain (IGcam) (Figure 2). Hassel and colleagues identi-

fied one deletion mutation (p.G650 del) and two missense

mutations (p.P611Y and p.Y652C) in NEXN in a large

cohort of patients with dilated cardiomyopathy. Notably,

the three identified NEXN mutations reside in the rather
VESD LVEDD LA EF (%) ECG Mutation

8 46 37 67 T-wave changes p.Q131E

9 45 40 62 LVH voltage criteria p.Q131E

6 39 41 57 normal p.Q131E

9 57 46 55 AF, ST-T changes p.R279C

8 45 38 65 normal p.R279C

0 51 35 71 LVH voltage criteria p.R279C

5 38 34 59 normal p.R279C

Hg); LVmax, left ventricular wall maximal thickness; PW, posterior wall thick-
ricular end–diastolic diameter (mm); LA, left atrial anterior-posterior diameter
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Figure 3. Distribution of V5-Tagged
NEXN in C2C12 Cells
C2C12 cells transfected with V5-tagged
full-length wild-type (WT) (A–C) or mu-
tants p.Q131E (D–F) and p.R279C (G–I) or
with V5-tagged first actin-binding domain
(ABD) (J–L) or mutant NEXNABD-p.Q131E
(M–O). NEXN constructs were fixed 24 hr
after the transfection and stained by a V5
antibody followedby a secondary antibody
(A, D, G, J, M) and incubated with phalloi-
din andDAPI (B, E,H, K,N) (Magnification:
4003). Merged images (C, F, I, L, O) are
shown. Overexpression of wild-type
NEXN was preferentially distributed along
F-actin, whereas mutants p.Q131E and
p.R279C showed partially abnormal aggre-
gates in the cytoplasm. Expression of the
NEXNABD fragment of amino acids 1–164
in C2C12 cells showed that this fragment
tended to be localized in the nucleus and
was partially distributed along F-actin,
whereas the mutant NEXNABD-p.Q131E
fragment was completely dispersed into
the nucleus and cytoplasm.
restricted region of amino acids 611–652 located in the

IGcam domain of nexilin. Interestingly, the two muta-

tions, p.Q131E and p.R279C, that we identified in the

Chinese patients with HCM are located in the first ABD

and CC, respectively, each of which is closer to the

N terminus of nexilin.

The differences in the location of mutations identified

in the two cohort studies may implicate that the molecular

mechanisms underlying the NEXN-related pathogenesis

for DCM and HCM might be different. To determine

whether the NEXN mutations, p.Q131E and p.R279C,

affect the localization of nexilin protein and its binding

ability to a-actin, we created NEXN expression vectors

and performed an immunocytochemistry study. Because

the p.Q131E mutation is exactly situated in the first

actin-binding domain of nexilin, we also generated frag-

ment clones containing this binding domain to better

understand the effects of the mutation on actin binding.

The human full-length NEXN cDNA and the fragment

encoding the first ABD (amino acids 1–164) were cloned

into pcDNA3.1/V5 vector. Mutants were generated by site-

directed mutagenesis, and all generated constructs were
The American Journal of Human Genet
confirmed by direct sequencing. Cul-

tured C2C12 cells were transfected

with the wild-type or mutant V5-

tagged NEXN constructs with the use

of Lipofectamine 2000. Cells were

stained by rabbit V5 polyclonal anti-

body followed by secondary donkey

FITC-conjugated antibody to rabbit

IgG, and Alexa Fluor 633 conjugated

to phalloidin was used for F-actin

staining. Nuclei were stained with
40,6-diamidino-2-phenylindole dihydrochloride (DAPI).

The results showed that the wild-type NEXN was preferen-

tially distributed along F-actin, whereas the mutants

p.Q131E and p.R279C presented local accumulations in

the cytoplasm (Figure 3). Expression of the NEXNABD frag-

ment (amino acids 1–164) in C2C12 cells showed that

this fragment tended to aggregate in the nucleus and

was partially distributed along F-actin; however, when

p.Q131E was introduced, the mutant NEXNABD fragment

was entirely dispersed into nucleus and cytoplasm and

completely lost the ability to bind to F-actin (Figure 3).

Similar results were observed in differentiated C2C12 cells

(Figure S1). Noticeably, intranuclear accumulation of the

NEXNABD fragment points to the possibility that a cyto-

plasmic localization signal (CLS) exists at the C-terminal

part of nexilin. Immunoblot analysis did not show obvious

differences in the protein levels of full-lengthwild-type and

mutants or between NEXNABD and NEXNABD-p.Q131E

(Figure S2). To verify the above findings in immunocyto-

chemistry, we then performed a coimmunoprecipitation

study. The human a-actin cDNA was cloned into

pcDNA3.1/NT-GFP vector and was cotransfected with
ics 87, 687–693, November 12, 2010 691



Figure 4. Binding of NEXN to a-Actin
Binding of the full-length NEXN and NEXN fragment to a-actin
was analyzed by coimmunoprecipitation and subsequent immu-
noblotting. Lysates fromHEK293 cells cotransfected with NT-GFP-
tagged a-actin and V5-tagged NEXN constructs (NEXN, NEXN-
p.Q131E, NEXN-p.R279C, NEXNABD, or NEXNABD-p.Q131E) were
immunoprecipitated with a V5-specific antibody (IP: V5) and
subsequently immunoblotted with a HRP-conjugated V5- and
GFP-specific antibody. Untransfected cells served as negative con-
trols. Inputs were cell lysates subject to immunoblotting without
immunoprecipitation.
NEXN-V5 vectors intohuman embryonic kidney (HEK) 293

cells. Immunoprecipitation and subsequent immunoblot-

ting were performed, with slight variations, as previously

described.29Our results showed that the p.Q131Emutation

decreased the binding of full-length NEXN to a-actin and

abolished the binding of the NEXNABD-p.Q131E mutant

fragment to a-actin (Figure 4). In addition, the p.R279C

mutation did not change the binding ability of nexilin to

a-actin. However, we cannot exclude the possibility that

this mutation might be involved in the binding of nexilin

to other components of the sarcomere or Z-disc. Taken

together, our findings provide the biochemical basis for

the possible pathogenesis of HCM associated with NEXN

mutations.

The Z-disc has received extensive attention recently in

cardiac hypertrophy research because mutations in genes

encoding several of its constituents have been shown to

cause hypertrophic cardiomyopathy.7,13,16,19,20 Proteins

of Z-discs are important in stabilizing sarcomere, inte-

grating mechanical forces, and distributing these within

the muscle cell and to the extracellular matrix. In addition,

they appear to serve as a docking station for transcription

factors, Ca2þ signaling proteins, kinases, and phosphatases

and as a way station for proteins that regulate transcription

by aiding in their controlled translocation between the

nucleus and the Z-disc.13,30 With these roles, a main impli-

cation for the Z-disc is its involvement in the cardiomyo-

cyte stretch-sensing and -response systems, which may

transduce multiple signaling pathways during stress, trans-

lating into hypertrophic responses and remodeling.15,31

Nexilin has a unique role in stabilizing cardiac Z-discs

and is essential for maintaining Z-disc integrity against
692 The American Journal of Human Genetics 87, 687–693, Novemb
the extreme forces generated during muscle contraction.22

As a recently identified member of the Z-disc gene family

and because of the potential differences between HCM

and DCM in the pathogenesis caused by NEXN defects,

the function of NEXN remains to be further elucidated.
Supplemental Data

Supplemental Data include two tables and two figures and can be

found with this article online at http://www.cell.com/AJHG/.
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